Gravity Games ### **DESCRIPTION** This lesson guide integrates a series of activities designed to demonstrate gravity's role in recreation. ### **OBJECTIVES** Students will: - Demonstrate the use of gravity as an energy source for motion - Identify aspects of gravity involved in various common games - Develop modifications to overcome the effect of microgravity on toys # UNIT Physical Science – Gravity GRADE LEVELS 4th – 6th CONNECTION TO CURRICULUM Science and Mathematics TEACHER PREPARATION TIME 1.5 hours LESSON TIME NEEDED Complexity: Moderate ### **NATIONAL STANDARDS** ## **National Science Education Standards (NSTA)** Science as Inquiry - Skills necessary to become independent inquirers about the natural world Physical Science - Motions and Forces - Transfer of Energy Science in Personal and Social Perspectives • Science and technology in society # **Common Core State Standards for Mathematics (NCTM)** Number and Operations • Perform operations with multi-digit whole numbers and with decimals to hundredths Measurement and Data 9 hours • Represent and interpret data Expressions and Equations • Reason about and solve one-variable equations and inequalities ### MANAGEMENT The marble run activity and spaced out sports require a fair amount of room and may be noisy. Groups of 4-5 students are recommended for both activities. If performing the entire toys in space activity, you will need videoconferencing capability. ### CONTENT RESEARCH The force of gravity permeates all aspects of life as we know it including social and recreational interactions. Gravity's downward pull provides a ready source of energy for both starting and stopping motion. # **Key Terms** - Gravity the attractive force between any two massive objects - Friction the retarding force generated when two objects are in contact and move with respect to each other. - Inertia the tendency of an object to maintain its state of motion - Energy the ability to do work - Microgravity the minimized effect of gravity experienced by objects in freefall • **Misconceptions** – Students often forget the importance of gravity in everyday tasks and neglect the amount of modification necessary to perform those tasks in microgravity. They may also believe that, because objects in orbit appear to float, there is no gravity in orbit. The actual pull of gravity on objects in low Earth orbit is only ten percent less than at the surface of the Earth. ### **LESSON ACTIVITIES** The suggested sequence starts by introducing the need for gravity in recreation and progresses to studying different aspects of gravity's effects and modifying tasks to account for microgravity. ### Marble Run Students use marbles and flexible pipe insulation to create roller-coaster style tracks. http://er.jsc.nasa.gov/seh/amuse_park_physics.pdf ### **Spaced Out Sports** Students perform a series of activities to explore aspects of gravity's effect on games. The first four activities are relevant to this lesson. http://education.ssc.nasa.gov/spacedoutsports.asp ### **Toys In Space** Students explore the effects of microgravity on toys and create modifications to them during a videoconference event. http://aesp.nasa.okstate.edu/ftp/anderson/toysweb/index.htm ### **RELATED RESOURCES** Short video clip introducing the importance and limitations of gravity. http://www.nasa.gov/mov/162014main_013_PullofGravity.mov Short video explaining microgravity http://www.nasa.gov/mov/196818main 053 Impact Microgravity.mov ### **MATERIALS** - Marbles - Stopwatches - Multiple half pieces of copper pipe insulation (gray, spongy) each 6' long - Masking tape - Meterstick - CDs - ½" diameter PVC segments 34" long - Round balloons - 1 hole #2 rubber stoppers - Hot glue guns and glue - Cardboard - String - Metal washers - Paper punch - Short dowels - Swivel chair - Two hand weights (2-3 lbs) - Cellophane tape - Cardstock boomerangs - Assorted toys matching toys in space video clips ### **DISCUSSION QUESTIONS** Each activity includes questions for discussion. Additional questions: - Why would NASA scientists study toys? Toys often employ principles necessary for complex equipment but in a simpler form - What part of a rollercoaster ride is like spaceflight? The downhill portions are similar to orbit in terms of the feel of gravity ### **ASSESSMENT ACTIVITIES** Each activity has a series of questions in the student pages. Pretest / Posttest questions: - What is gravity? The attractive force between any two massive objects - List two toys that depend on gravity. Answers will vary but should indicate the need for downward pull - How does gravity help a rollercoaster? After the first hill, it provides the energy for the ride ### **ENRICHMENT** - Students may want to explore other amusement park rides which require gravity. - Have students combine all segments of track to create a giant rollercoaster. - Have students perform other challenges from Spaced Out Sports.